
Evolving Multi-Objective Evolutionary Algorithms using 
Multi-Objective Genetic Programming

A dissertation submitted in partial fulfilment 
of the requirements for the Open University’s 

Master of Science Degree 
in Software Development

Hannes Wyss
(U2708061)

1. March 2007

Word Count: 13761



Preface

This Dissertation is dedicated to my wife Clíodhna Ní Aodáin, who had her own storm 

to weather and still had time to bring me a fresh cup of really hot tea. I would also like 

to thank my business associate Zeno Davatz whose equanimity I can only aspire to, and 

my tutor Malcolm Jenner for his concise criticism and his patience with my penchant 

for open-sourced word processors. All my gratitude goes to my parents, my sister and 

my brother, whose never-ending support has kept me afloat.

ii



Table of Contents

 Preface.........................................................................................................................ii

 Abstract........................................................................................................................x

Chapter 1  Introduction......................................................................................................1

1.1 Multi-Objective Evolutionary Optimization...........................................................1

1.1.1  Multi-Objective Optimization........................................................................2

1.1.2 Evolutionary Algorithms.................................................................................4

1.1.3 Evolutionary Algorithms in Multi-Objective Optimization............................5

1.1.4 Quality Characteristics in Multi-Objective Optimization...............................6

1.1.5 Genetic Programming.....................................................................................7

1.2 Searching for non-dominated Multi-Objective Evolutionary Algorithms..............7

1.3 Overview of the Dissertation..................................................................................8

1.4 Summary.................................................................................................................9

Chapter 2 Literature Review............................................................................................10

2.1 Introduction...........................................................................................................10

2.2 Genetic Programming...........................................................................................10

2.2.1 Inception and theory......................................................................................10

2.2.2 Code-bloat.....................................................................................................10

2.2.3 Multi-Objective Genetic Programming.........................................................11

2.2.4 Necessary Preparations for a GP-System......................................................11

2.3 Multi-Objective Evolutionary Optimization.........................................................12

iii



2.3.1 Performance metrics......................................................................................12

2.3.2 Test design ...................................................................................................17

2.3.3 Algorithms and Genetic Operators................................................................19

2.4 Research question.................................................................................................23

2.5 Summary...............................................................................................................24

Chapter 3 Research Methods...........................................................................................25

3.1 Introduction...........................................................................................................25

3.2 The Open BEAGLE Framework..........................................................................25

3.3 NSGA-II................................................................................................................26

3.4 Tree depth instead of program size.......................................................................27

3.5 Selection of a Performance Metric: the Reverse Generational Distance..............27

3.5.1 Dominance Relations....................................................................................28

3.5.2 Grades of comparability................................................................................30

3.5.3 Reverse Generational Distance.....................................................................31

3.6 Test Problems........................................................................................................31

3.7 Wilcoxon rank-sum test........................................................................................33

3.8 Summary...............................................................................................................34

Chapter 4 Data Collection...............................................................................................36

4.1 Introduction...........................................................................................................36

4.2 Experiment 1: High-level Operators.....................................................................36

4.2.1 Function set...................................................................................................36

iv



4.2.2 Terminal set...................................................................................................37

4.2.3 Configuration and preliminary analysis........................................................38

4.3 Experiment 2: Lower-level Selection...................................................................41

4.3.1 Function set...................................................................................................41

4.3.2 Terminal set...................................................................................................41

4.3.3 Configuration and preliminary analysis........................................................42

4.4 Summary...............................................................................................................44

Chapter 5 Results.............................................................................................................45

5.1 Introduction...........................................................................................................45

5.2 Performance of high-level genetic operators........................................................45

5.2.1 Selection strategies........................................................................................49

5.2.2 Fitness modifiers...........................................................................................54

5.2.3 Crossover operators.......................................................................................55

5.2.4 Mutation operators and elite selection strategies..........................................57

5.3 Lower-level functions...........................................................................................58

5.3.1 Interesting solutions......................................................................................60

5.4 Validation..............................................................................................................65

5.4.1 Results...........................................................................................................65

5.5 Summary...............................................................................................................66

Chapter 6 Conclusions.....................................................................................................67

6.1 Project review.......................................................................................................67

v



6.2 Future research......................................................................................................69

 References..................................................................................................................71

 Index..........................................................................................................................76

 Appendix A................................................................................................................79

 Appendix B................................................................................................................85

vi



List of Figures

Figure 1: Mapping from a 3-dimensional parameter-space into a 2-dimensional 

solution-space...................................................................................................2

Figure 2: Quality characteristics in Multi-Objective Optimization...................................6

Figure 3: Elite archive of 67 individuals (60 generations per individual, 3d-scatterplot)

........................................................................................................................38

Figure 4: Elite archive of 67 individuals (60 generations per individual, plot matrix).. .39

Figure 5: Elite archive of 87 individuals (15 generations per individual, 3d-scatterplot)

........................................................................................................................40

Figure 6: Elite archive of 87 individuals (15 generations per individual, plot matrix).. .40

Figure 7: Elite archive of 73 individuals (30 generations per individual, 3d-scatterplot)

........................................................................................................................42

Figure 8: Elite archive of 73 individuals (30 generations per individual, plot matrix).. .44

Figure 9: Convergence with high-level operators: best individuals................................46

Figure 10: Convergence with high-level operators: average performance......................47

Figure 11: Uniformity with high-level operators: best individuals.................................47

Figure 12: High-level operators – Champion solution (30 generations per individual)..48

Figure 13: Uniformity with high-level operators: average performance.........................49

Figure 14: Convergence with lower-level operators: average performance....................58

Figure 15: Convergence with lower-level operators: best individuals............................59

Figure 16: Uniformity with lower-level operators: average performance.......................59

Figure 17: Uniformity with lower-level operators: best individuals...............................60

Figure 18: Double Tournament selection strategy: detail from champion solution 

(30 generations)..............................................................................................61

vii



Figure 19: Triple Tournament selection strategy: detail from champion solution 

(60 generations per individual)......................................................................62

Figure 20: Lower-level functions – Champion solution (60 generations per individual)

........................................................................................................................64

viii



List of Tables

Table 1: Function Set.......................................................................................................37

Table 2: Last occurrence of Elite Selection Strategies in individuals with 60 generations

.........................................................................................................................41

Table 3: Lower-level building-blocks.............................................................................43

Table 4: Selection strategies – Wilcoxon rank-sum tests for the RGD-Metric, tested 

against the entire sample.................................................................................51

Table 5: Selection strategies – pairwise Wilcoxon rank-sum tests between operators. . .52

Table 6: Selection strategies – Wilcoxon rank-sum tests for the standard deviation from 

the RGD-Metric, tested against the entire sample..........................................53

Table 7: Selection strategies – Wilcoxon rank-sum tests for the standard deviation from 

the RGD-Metric with reversed H1, tested against the entire sample..............54

Table 8: Crossover operators – Wilcoxon rank-sum tests for the RGD-Metric, tested 

against the entire sample.................................................................................55

Table 9: Crossover operators – Wilcoxon rank-sum tests for the standard deviation from 

the RGD-Metric, tested against the entire sample..........................................56

Table 10: Blend Crossover – Wilcoxon rank-sum tests for the standard deviation from 

the RGD-Metric with reversed H1, tested against the entire sample..............57

Table 11: Elite archives – Wilcoxon rank-sum tests for the RGD-Metric, tested against 

the entire sample.............................................................................................57

ix



Abstract

Many real-world optimization problems present decision-makers with multiple 

conflicting objectives. Such Multi-Objective Optimization problems are preferably 

solved by providing the decision-maker with a maximally diverse selection of optimized 

solutions. Since Evolutionary Algorithms – due to their population paradigm – already 

work on several solutions in parallel, their ability to optimize multiple objectives is an 

inherent property and many successful Multi-Objective Evolutionary Algorithms have 

been described. In Genetic Programming, the concept of evolutionary search is used to 

search for algorithms. Owing to their common ancestry in evolutionary computation, 

the techniques employed in Multi-Objective Evolutionary Algorithms are largely 

applicable to Genetic Programming.

The search for good Multi-Objective Evolutionary Algorithms is itself a multi-objective 

problem: such an algorithm is said to be “good” if it finds both maximally optimized 

and maximally distributed solutions. Based on this assumption, the presented 

dissertation examines whether it is possible to evolve Multi-Objective Evolutionary 

Algorithms by applying Multi-Objective Evolutionary techniques to Genetic 

Programming. In particular, the following three questions are examined:

• Can Genetic Programming find a good Multi-Objective Evolutionary Algorithm 

by pure recombination of known genetic operators and selection methods?

• Can Genetic Programming define new genetic operators or selection methods, if 

given appropriate building blocks, and are they of similar quality as methods taken 

from the literature?
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• How well do the best of these automatically generated Multi-Objective 

Evolutionary Algorithms perform in more complex test problems, when compared 

to known good algorithms? 

To support this new process, an existing classification system of dominance relations is 

extended and two finer-grained dominance relations are introduced: “distribution-

comparable” and “convergence-comparable” are able to completely and exclusively 

classify so-called incomparable approximation sets. 

Experiments investigating the recombination of high-level genetic operators from the 

literature appear to support the initial assumption, although statistical analysis of the 

collected data yields mostly inconclusive results. Subsequent exploration of new 

selection operators evolved from lower-level functions are successful: the Triple 

Tournament selection operator is the first genetic operator programmed by means of 

natural selection. This and other resulting algorithms, while unable to outperform 

NSGA-II, highlight the importance of underlying parameters and the dangers of over-

specialization in complex Genetic Programming environments.
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Chapter 1 Introduction

From the second half of the twentieth century onwards, computer scientists have 

investigated the idea of artificial intelligence. If computing machinery was able to 

relieve us from tedious repetition, why should it not also assist us in solving more 

complex problems? Two prominent concepts of the field, machine learning and 

evolutionary computation, were first envisioned by Alan Turing (Turing, 1950) in his 

seminal article “Computing Machinery and Intelligence”:  

Instead of trying to produce a programme to simulate the adult mind, why not 
rather try to produce one which simulates the child's? If this were then subjected 
to an appropriate course of education one would obtain the adult brain. [...]

We have thus divided our problem into two parts. The child-programme and the 
education process. These two remain very closely connected. We cannot expect to 
find a good child-machine at the first attempt. One must experiment with teaching 
one such machine and see how well it learns. One can then try another and see if it 
is better or worse. There is an obvious connection between this process and 
evolution, by the identifications

Structure of the child machine = Hereditary material
Changes      “               “ = Mutations
Natural selection = Judgment of the experimenter

Half a century later, both parts of Turing's original problem have found many competent 

solutions. In some instances, two paradigms have been successfully combined. 

Particularly in the field of neuroevolution (where evolutionary algorithms are used to 

configure an Artificial Neural Network) investigators have found promising results 

(Gruau and Whitley, 1993; Yao, 1999; Pardoe et al., 2005). This thesis aims to do the 

same for Multi-Objective Evolutionary Algorithms and Genetic Programming. 

1.1 Multi-Objective Evolutionary Optimization

The ancestral line of Genetic Programming can be traced back to R. Friedberg's article 

“A Learning Machine” (Friedberg, 1958), in which he describes the iterative creation of 
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a program that solves a simple bit-moving problem. The lineage of Evolutionary 

Optimization – the search for optimal solutions modelled after Darwinian evolutionary 

theory – comes from ideas first investigated by Hollstien (1971), Holland (1975) and 

particularly De Jong (1975). Conjoined by the field of Multi-Objective Optimization, 

Genetic Programming and Evolutionary Optimization form the foundation of the 

present thesis.

1.1.1  Multi-Objective Optimization

Optimization is the search for a set of parameters that describe an optimal solution when 

translated by an objective function; this is usually expressed as the minimization or 

maximization of the objective function. It is helpful to regard this process as a mapping 

from parameter space into solution space, where  parameters define the -dimensional 

parameter space, and  objective functions define the -dimensional solution space. 

Figure 1 shows an example of such a mapping, with shaded areas marking the feasible 

search-space – those parts of the parameter and solution spaces for which a meaningful 

mapping exists. The border-segment of the feasible solution space marked by a solid 

line contains all optimal solutions for the case of minimization.

2
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In many real-world optimization problems, multiple objectives need to be optimized in 

order to find a satisfactory solution. An optimization problem in which two or more 

objective functions share at least one parameter is called a Multi-Objective 

Optimization problem. In interesting cases there are two or more conflicting and often 

incommensurable objectives; this leads to so-called trade-off situations in which each 

objective can only be improved at the cost of degradation in one or more other 

objectives. Due to the non-linear nature of Multi-Objective Optimization problems, 

deceptive local trade-off solutions may exist. Such a local trade-off solution is called a 

local optimum. Its counterpart, the global optimum, is also called Pareto-optimal  

solution.

The field of Multi-Objective Optimization seeks to assist a (human) decision-maker in 

choosing an appropriate solution (Coello Coello, 2000; Deb, 2001). A typical 

classification of methods for multi-objective decision making (Hwang and Masud,

1979) describes four possible points of influence when the decision-maker's preferences 

may enter the formal decision-making process:

1. No point of influence (automatic search without intervention from the decision-

maker)

2. Before the search (a priori approach)

3. During the search (progressive approach)

4. After the search (a posteriori approach)

Since the decision-maker cannot usually be expected to have a priori insight in the 

exact trade-off among objective functions, it is generally considered desirable to use the 

a posteriori approach and present the decision-maker with a selection of promising 

solutions – an approximation set – which takes into account such trade-off behaviour. 
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The relation between two of these promising solutions is captured in the concept of 

Pareto-nondomination: a solution  is said to dominate another solution  (also 

written ) if the following conditions are both satisfied:

1.  is no worse than  in all objectives;

2.  is better than  in at least one of the objectives. 

If either of the two conditions are not satisfied, then  does not dominate . 

Non-domination does not permit any assertions about the reversal of the relation: 

simply because does not dominate , it does not necessarily follow that  

dominates . On the other hand, if  dominates , we can conversely say that  

does not dominate . If neither solution dominates the other, the two are non-

dominated to each other. The subset of all solutions within the feasible solution space 

 which are not dominated by any other solution  is called the 

Pareto-optimal set or Pareto-optimal front. All members of the Pareto-optimal set are 

thus by definition non-dominated to each other.

1.1.2 Evolutionary Algorithms

Evolutionary Algorithms leverage concepts found in Darwinian evolutionary theory to 

model efficient search behaviour. Iterating over a number of generations, a population 

of individual approximations is subjected to crossover and mutation operators, fitness 

evaluation and reproduction.

A Fitness function reflects the quality of a set of parameters with respect to the 

objectives of the search. Individual solutions are encoded into a genome (usually in 

binary form or as a so-called real-value genome) and subjected to genetic operators at 

the beginning of each generation. The mutation operator randomly modifies parts of the 
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genome, while the crossover operator swaps parts of two individuals' genomes. The 

resulting modified genome is then used as an input to the fitness function. If the 

resulting fitness is good, this heightens the probability of an individual's inclusion in the 

next generation by a reproduction operator. The entire process is repeated in subsequent 

generations until an exit condition is reached, usually a predefined minimal fitness level 

or a maximum number of generations.

1.1.3 Evolutionary Algorithms in Multi-Objective Optimization

One of the defining properties of Evolutionary Algorithms is the fact that they are 

population based and therefore operate on multiple solutions in parallel. On an intuitive 

level this matches naturally with the goal of finding multiple Pareto-optimal solutions. 

However, it has been shown that it is not straightforward to exploit this connection; 

Evolutionary Algorithms have the tendency to converge towards a single solution 

within the feasible solution space, whereas the desired result encompasses a maximally 

distributed subset of the entire Pareto-optimal set (Deb, 2001).

Coello Coello (2005) describes three classes of Multi-Objective Evolutionary 

Algorithms (MOEAs): 

1. Aggregating functions reduce the multi-objective problem to a single objective 

problem by aggregating all objective functions into one, for example with the 

use of a weight or bias vector. Since such a vector must be defined before any 

fitness-evaluation can take place, aggregating functions fall into the class of 

a priori approaches to multi-objective decision making.  

2. Population-based approaches leverage the population of an Evolutionary 

Algorithm to obtain diverse solutions, without making use of the concept of 

Pareto domination. 
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3. Pareto-based approaches explicitly use Pareto domination as a fitness criterion. 

They can be grouped into two generations: the first generation uses fitness 

sharing and niching combined with Pareto ranking to overcome the difficulties 

posed by the point-convergence behaviour. The introduction of e litism marks 

the beginning of the second generation. Elitism was first described in De Jong

(1975) and its application to MOEAs was suggested by Rudolph (1996). In 

elitism, an archive population of non-dominated solutions is used to prevent the 

loss of promising solutions due to the stochastic nature of selection and 

reproduction operators. 

1.1.4 Quality Characteristics in Multi-Objective Optimization

An often-mentioned distinguishing feature of Multi-Objective Optimization is the fact 

that the quality of an obtained approximation set is determined by two independent 

properties: closeness to the Pareto-optimal front (convergence) and the diversity of the 

obtained approximations along the same (Deb, 2001). The latter can be further divided 

into the criteria of distribution and extent (Figure 2), ideally approaching uniform 

distribution and an extent which spreads over the entire range of possible values for all 

parameters (ibid.; Zitzler et al., 2000). In other words: the search for a good Multi-

Objective Optimization Algorithm exhibits properties of a multi-objective problem.

6
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1.1.5 Genetic Programming

The related field of Genetic Programming (GP) is another type of evolutionary search. 

Here, instead of binary or real-value parameters, the genome consists of an executable 

program (syntax tree, linear or graph-based structures). GP can be seen as a 

generalization of traditional Evolutionary Algorithms: the latter usually search for 

optimal parameter-configurations for a given evaluation function specific to the problem 

domain. The former can additionally search for evaluation functions, given a set of 

terminals and operations specific to the problem domain.

Due to GP's close relation to traditional Evolutionary Algorithms, many concepts found 

in MOEA research are applicable in GP. Rodriguez-Vazquez et al. (1997) explored the 

area of Multi-Objective Genetic Programming; others have investigated the utility of the 

concept of Pareto dominance in dealing with the problem of "code bloat" (De  Jong et

al., 2001; Ekárt and Németh, 2001; De Jong and Pollack, 2003). In a somewhat less 

obvious way the concepts of GP should be applicable to the search for new MOEAs: 

since the search for a good Multi-Objective Optimization Algorithm is itself a multi-

objective problem; and since GP is designed to evolve algorithms, and MOEA-concepts 

are applicable within GP; it follows that it should be feasible to search for a Multi-

Objective Evolutionary Algorithm using Multi-Objective Genetic Programming.

1.2 Searching for non-dominated Multi-Objective Evolutionary Algorithms

The aim of the presented research is to investigate how Multi-Objective Genetic 

Programming (MOGP) can be used in the search for new MOEAs. Borrowing from 

Turing, one could say it attempts to teach MOEA child machines to learn, employing 

MOGP as a substitute teacher. The curriculum: MOEAs and evolutionary computation 

in general are well-researched fields; there are many genetic operators (crossover, 
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mutation, fitness evaluation, selection and reproduction) to choose from the literature, 

which can then be utilized as (high-level) building-blocks in an MOGP system. 

Additionally, lower-level functions can be extracted from them and used to search new 

genetic operators.

Besides defining a framework for the generation of MOEAs within an MOGP system 

and proposing a selection of such high- and lower-level building blocks, the 

introduction of a classification for formally incomparable approximation sets is another 

contribution to knowledge by this thesis. Furthermore, it presents insights into the 

idiosyncrasies of such nested evolutions and provides researchers with statistical data 

concerning the trade-off behaviour between convergence and diversity. Practitioners 

may find the same information helpful in selecting an MOEA for their specific problem 

domain. 

1.3 Overview of the Dissertation

This dissertation attempts to fulfil its aims in three phases. Based on related research, a 

framework for the evolutionary generation of Multi-Objective Evolutionary Algorithms 

(MOEAs) is first defined, including test problems and a combination of performance 

metrics. In a second experimental part, it shows that the concepts of Genetic 

Programming (GP) are indeed applicable to the domain of MOEAs: firstly by exploring 

combinations of known good genetic operators, and secondly by searching for new 

selection operators using a number of lower-level functions extracted from the same.

Third, the collected data and its analysis yield insights into the performance of various 

genetic operators and selection mechanisms. Three interesting automatically produced 

combinations of lower-level functions are presented in detail and the most promising of 

them is quantitatively compared to an established MOEA.

8



1.4 Summary

From the second half of the 20th century, computer scientists have sought ways to teach 

machines to learn. In the presented thesis, two areas within the field of machine learning 

are of special interest: Multi-Objective Evolutionary Algorithms (MOEA), and Genetic 

Programming (GP). The area of MOEAs poses many problems to the researcher, 

namely the trade-off between convergence and diversity. GP profits from results found 

in MOEA research, and may in turn present us with ways to tackle some of MOEAs' 

foremost problems. By teaching MOEA child machines to learn with the aid of a GP 

teacher, this thesis aims to explore some of these paths.
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Chapter 2 Literature Review

2.1 Introduction

This dissertation aims to draw together the two research fields of Multi-Objective 

Evolutionary Algorithms (MOEAs) and Genetic Programming (GP). The literature 

review concentrates on those aspects of both fields that are necessary or beneficial 

prerequisites for the empirical steps towards that aim. In the case of GP, our substitute 

teacher, we need an overview of the concept and its applicability to the problem 

domain, along with an indication of the greatest pitfalls to be avoided. In the case of 

MOEAs, which play the role of child machines, we look at what there is to learn for 

them, and how to test and rate their progress. 

2.2 Genetic Programming

2.2.1 Inception and theory

First described by John R. Koza (1990), GP provides a framework for the automatic 

generation of computer programs using evolutionary algorithms. Unlike traditional 

evolutionary algorithms, which usually operate on parameter-vectors, GP manipulates 

program structures. Subsequent research has theoretically validated key concepts, 

including convergence proofs for both linear and tree-based GP (Langdon and Poli,

2002). It has also been demonstrated empirically that GP can be a valid tool in finding 

new solutions to complex problems in many domains (Koza et al., 1999). 

2.2.2 Code-bloat

One problem often observed in GP experiments is the so-called code-bloat: During the 

course of a GP run, the average size of the individuals in a GP-population will grow 

uncontrollably, leading in extreme cases to stagnation – no further evolution is possible. 
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Code-bloat is closely associated with so-called introns, arbitrarily large occurrences of 

superfluous code that do not alter the result produced by an individual (Banzhaf et al.

1998). It has been shown empirically that genetic operators work most efficiently on 

dense program structures with few introns; these findings were reinforced and explained 

through theoretical analysis (Greene, 2005). Classic approaches in dealing with code 

bloat include defining an upper limit for program size, and linearly degrading individual 

fitness as program size grows. Unfortunately, the former requires a confident estimate 

of the program size needed for a satisfactory solution and thus does not scale well, 

whereas with the latter approach, good solutions may be lost due to the resulting 

indiscriminate selection pressure.

2.2.3 Multi-Objective Genetic Programming

A promising approach to dealing with code-bloat is explored in De Jong et al. (2001), 

Bleuler et al. (2001) and De Jong and Pollack (2003): it is generally an implicit goal in 

GP to obtain small candidate solutions with as few introns as possible. In the Multi-

Objective GP approach (MOGP) that goal is made explicit. Various Pareto-domination-

based algorithms can then be used to address this newly defined multi-objective 

problem. To preclude the problem of premature convergence, a crowding metric can be 

employed as a third objective. 

2.2.4 Necessary Preparations for a GP-System

Before a GP-System can be run, the following five preparatory steps need to be taken 

(Koza, 1994):

1. Determine the set of terminals

2. Determine the set of primitive functions
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3. Define the fitness measure

4. Choose the parameters for controlling the run

5. Define a method for designating a result and termination criteria.

In the experiments conducted in the course of this study, the first three of these come 

from the domain of MOEAs. The following section provides background on the 

possible choices.

2.3 Multi-Objective Evolutionary Optimization

In order to define a valid fitness measure for the GP-System, a deeper look at 

performance comparison of MOEAs is needed: in the context of this thesis, each GP-

experiment will yield an approximation set of individual solutions , of which each 

element  is itself an evolutionary algorithm and, after fitness evaluation, an 

associate approximation set. The fitness of  should reflect how well it approximates 

the Pareto-optimal set of any given multi-objective problem. In the last several years 

much thought and research has gone into establishing methods that allow an objective 

comparison of MOEAs. Efforts in this field can be grouped into two distinct areas: 

performance metrics and test problems

2.3.1 Performance metrics

The set of solutions  found by an MOEA is called the approximation set. While it is 

theoretically possible for  to be a subset of the Pareto-optimal set , this is usually 

not the case. Performance Metrics provide an unbiased way to measure how well an 

MOEA can approximate the Pareto-optimal front. The adequacy of a set of solutions is 

determined by both its closeness (convergence) to the Pareto-optimal front and its 

diversity (or distribution) along the same (Deb, 2001; Bosman and Thierens, 2003). 
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Zitzler et al. (2000) name the extent (or spread) as a separate third objective. In order to 

obtain quantitative expressions of these objectives, many performance metrics have 

been defined:

• An early metric measuring the quality of distribution of the solutions in an 

approximation set is the Spacing Metric (Schott, 1995). It essentially depicts the 

standard deviation from the mean distance between neighbouring members of the 

approximation set and thus does not take into account the extent of the 

approximation set.

• Fonseca and Fleming (1996) describe the Attainment Surface Metric. The 

attainment surface is the boundary which separates all points in the solution space 

that are dominated by at least one result-vector from the ones that are not. If 

multiple runs of an MOEA are considered, the -attainment surface 

encompasses all points that are likely to be dominated in at least  of all runs. 

The main limitation of this approach, as stated by the investigators themselves, is 

that probability estimates for attainment can only be made for single points and not 

for the entire surface.

• The Generational Distance metric (Van Veldhuizen and Lamont, 1998) measures 

the average distance between an approximation set  and the Pareto optimal set 

. For each of the  members  of the approximation set, the nearest member 

 of the Pareto optimal set is identified and their Euclidean distance  (the length 

of a straight line in solution space from  to ) is computed. The Generational 
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Distance is defined as the arithmetic average of these values:

 

• The Hypervolume Metric first described by Zitzler and Thiele (1998b) is derived 

from the volume of the union of all hypercubes formed with the elements of the 

approximation set and a reference point . It corresponds to the size (the 

hypervolume) of that part of the solution space which comprises all points 

dominated by at least one member of the  approximation set.

• The Set Coverage Metric suggested ibid. calculates the proportion of solutions in 

an approximation set  which are strongly dominated (or covered) by any 

member of another approximation .

• The Error Ratio (Van Veldhuizen, 1999) is defined as the proportion of solutions 

in an approximation set which are not part of the Pareto-optimal set:

where  is the number of individuals in ,   if the solution  is part of the 

Pareto optimal set and  otherwise.

• The Maximum Pareto Front Error (ibid.) determines a maximum error band with 

respect to the Pareto optimal front, which encompasses all members of an 

approximation set. Similar to the Generational Distance, for each of the members 

of the approximation set the nearest member of the Pareto optimal is identified and 

their Euclidean distance calculated. The greatest of these values is the Maximum 

Pareto Front Error.
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• The Maximum Spread Metric defined by Zitzler (1999) measures the diagonal of 

that hypercube which encompasses all solutions in the approximation set; this 

hypercube is identified by the extreme values found in the approximation set with 

respect to each objective function.

• As mentioned above, one problem associated with the Spacing Metric is the fact 

that it carries no information about the obtained range of solutions. Whether the 

solutions spread over a wide range or are concentrated in one small area of the 

Pareto optimal front, an approximation set will have perfect spacing as long as the 

solutions are distributed evenly. To alleviate this problem, the Spread Metric was 

suggested by Deb et al. (2000). For each objective , the distance   between 

the champion solution in the Pareto optimal set and the corresponding closest 

member of the approximation set  is taken. The sum of these is then used as 

follows:

where is the shortest distance (e.g. the Euclidean distance, others are allowed 

also) between a member  of the approximation set and any other member and  

is the mean value of all of these distances.

• A recent Performance Metric concerned with distribution quality was suggested by 

Farhang-Mehr and Azarm (2002a). To calculate the Entropy Metric, an -

dimensional approximation set is first mapped into an -dimensional space 

with the aid of a procedure known as the Gram-Schmidt orthogonalization. The 

Density function of the resulting density-hypersurface can then be calculated with 

the aid of an influence function – a decreasing function of the distance to a point in 
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the density-hypersurface (e.g. a Gaussian function).  Finally the Entropy Metric is 

found by calculating the flatness of the Density function.   

• A shortcoming of the Generational Distance metric is the fact that an 

approximation set consisting of one single good individual has a smaller (i.e. 

better) Generational Distance value than another approximation set which finds 

slightly worse solutions all along the Pareto optimal front. In other words, the 

distribution of the approximation set is not taken into account. By including this 

information, the Reverse Generational Distance described by Bosman and

Thierens (2003) alleviates this problem. It is defined as the average Euclidean 

distance of each member of the Pareto optimal set to the closest member of the 

approximation set. Although Bosman and Thierens define the Reverse 

Generational Distance for continuous problems as a line integration over the entire 

Pareto optimal front, they suggest using a uniformly sampled set of solutions for 

most practical test applications.

• Similar to the Entropy Metric, the Sparsity Measure (Deb et al., 2005) maps 

solutions into a suitable hyperplane. Each projected solution is then given a 

surrounding hyper-cube with a side-length defined by a parameter . The total 

hyper-volume covered by all hyper-cubes created in this way, normalized by 

dividing with the total hyper-volume that could be covered if none of the hyper-

cubes would overlap, is the resulting Sparsity Measure. 

In the late 1990s, theoretical investigations have shown that most of the above 

Performance Metrics are inadequate for the comparison of MOEAs. Hansen and

Jaszkiewicz (1998) lay the theoretical foundations for the comparison of approximation 

sets by defining a set of outperformance relations. They recognized the main difficulty 
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with this approach to be that the majority of theoretically possible approximation sets 

are in fact incomparable by the said outperformance relations. On this base, they then 

proceeded to propose a range of comparison operators. To deal with the problem of 

incomparability, comparison operators based on utility functions and other quantitative 

comparison methods were proposed. Unfortunately all of these are only weakly 

compatible with the outperformance relations. Knowles and Corne (2002) expanded on 

this work to put known metrics in the context of the outperformance relations. 

According to their results, the usefulness of most metrics must be severely doubted. 

Building on the work by Hansen and Jaszkiewicz (1998), Zitzler et al. (2002) gave a 

general proof of the incompleteness of unary performance metrics: there is no unary 

performance metric from which it can be induced that one approximation set is better 

than another. In the general case, not even a finite combination of unary performance 

metrics is sufficient. It can be shown that there is no comparison method possible which 

is both compatible (a sufficient condition for a binary relation) and complete (a 

necessary condition for a binary relation) in respect with a binary relation stronger than 

A is not worse than B.

These findings reinforce the point made earlier, that the search for good MOEAs is 

itself a multi-objective problem. A useful comparison of MOEAs can only be made 

with the aid of at least two independent Performance Metrics. 

2.3.2 Test design 

The second aspect of Performance assessment is the design of appropriate test 

problems. A considerable amount of research has gone into defining scalable test 

problems that can be tuned to the various difficulties that an MOEA must overcome in 

order to find the Pareto optimal set. Deb (1999) identifies eight difficulties that an 
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MOEA faces. Four of those act against convergence of an MOEA towards the Pareto-

optimal front: 

1. Multimodality: multi-modal problems may exhibit a very large number of local 

optima, causing an MOEA to stagnate: if the variations introduced by mutation 

and crossover are too small to overcome the attraction of a local optimum, they 

may be rejected even though they lie closer to the global optimum.

2. Deception: a deceptive attractor may be favoured by a majority of the search 

space and thus disturb the direction of search. This difficulty is similar to 

multimodality, but instead of many small deceptions it poses few widespread 

ones.

3. Isolated optimum: some problems exhibit a very flat fitness landscape, divulging 

next to no information about the location of the optimum; the search process 

stagnates due to lack of direction. 

4. Collateral noise: problems with excessive variation in the solution space can 

lead to misleading fitness evaluations; good building blocks for one objective 

may be ignored if the solution performs poorly for other objectives.

Three more difficulties oppose diversity of the solutions:

1. Shape of the Pareto-optimal front: if the fitness of a solution is proportional to 

the number of solutions it dominates, convex regions of the Pareto-optimal front 

favour solutions close to the centre of the region, while non-convex regions tend 

to converge towards extreme solutions.  

2. Discontinuous Pareto-optimal front: due to the stochastic nature of MOEAs, 

some sub-regions of an approximation set may not survive a generation. If the 
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Pareto-optimal front is not continuous, there may be no possibility to repopulate 

such an extinct sub-region.   

3. Non-uniform distribution of solutions along the Pareto-optimal front: If the 

density of solutions along the Pareto-optimal front is not uniform, MOEAs may 

naturally converge towards the denser regions.

The last difficulty is the incorporation of constraints, which may oppose both 

convergence towards the Pareto-optimal front and diversity of solutions by rendering 

high-fitness solutions infeasible.

After his rigorous analysis, Deb (ibid.) proceeds to define a generic two-objective 

problem, for which the amount of difficulty caused by the above points can be finely 

tuned, and which may be extended to an arbitrary number of objectives: 

A critique of Deb's construction principles, along with a collection of different test 

problems, can be found in the doctoral dissertation submitted by Van Veldhuizen

(1999). Building on Deb's work, Zitzler et al. (2000) designed one test problem for each 

of the six distinct difficulties identified by Deb, four of which are used in the present 

research and explained in detail below. Test problems with more than two objectives 

were presented in Deb et al. (2002).

2.3.3 Algorithms and Genetic Operators

The terminal and primitive function set that are employed in the experimental phase of 

this research project are assembled from distinct elements of MOEAs described in 

literature. The first investigation in Evolutionary Multi-Objective Optimization was 

undertaken in J. D. Schaffer's doctoral dissertation (1984). Schaffer's Vector Evaluated 
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Genetic Algorithm (VEGA) divides the population into equal parts, optimizing each 

subpopulation for one single objective. Obviously this approach strongly favours those 

solutions which are specialized for one single objective. It was assumed that the 

application of a crossover operator would result in other solutions along the Pareto-

optimal front. However, inherent high selection pressure leads to convergence towards 

individual champion solutions.

In his textbook on Genetic Algorithms, Goldberg (1989) suggested the use of a non-

dominated sorting procedure, thus introducing the concept of Pareto optimality into the 

field of MOEAs. Nearly a decade after Schaffer's VEGA, Horn and Nafpliotis, and 

Fonseca and Fleming independently followed Goldberg's suggestion. In Fonseca and

Fleming (1993), an individual's fitness is determined according to its rank, which is 

defined as the number of other solutions in a generation which dominate it (the rank is 

then augmented by one, to avoid zero-values). The described Multi-Objective Genetic 

Algorithm (MOGA) also employs a niche sharing technique, scaling the individual 

fitness within each rank according to their niche count. The niche count is equivalent to 

the number of solutions that lie within a solution-space hypercube with a predefined 

side-length . The obvious drawback to this technique is that  needs to be 

defined in advance, which requires a priori insights on the shape of the solution space 

and may be a difficult choice depending on the problem domain.

Another approach is described in Horn and Nafpliotis (1993). The Niched Pareto 

Genetic Algorithm (NPGA) introduces a way to enhance diversity within a population 

of solution vectors: NPGA uses a tournament selection operator based on Pareto 

dominance. Whenever there is a tie, i.e. no solution dominates the other, selection is 

performed according to which solution has the lower niche count.
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Yet another application of Pareto dominance and niching is presented in form of the 

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1994). There 

are two main differences to Horn and Nafpliotis' NPGA: NSGA uses non-dominated 

sorting as opposed to Pareto domination tournaments and performs the niching 

calculation within the resulting Pareto fronts. Also, NSGA performs the niche counts in 

parameter space, as opposed to solution space. Srinivas and Deb suggest that this will 

prevent the danger of differing decision-variable configurations cancelling each other 

out if they result in similar result-vectors. 

In a series of papers, Günter Rudolph was able to provide a formal proof for the 

convergence of an MOEA towards the Pareto-optimal set in finite time (Rudolph, 1996; 

Rudolph, 1998; Rudolph, 2001a; Rudolph, 2001b). Key to the successful proof is the 

introduction of an elite archive (first described in De Jong, 1975), which guarantees that 

the best found solutions can not be lost due to the application of genetic operators. 

Although it was later shown in Hanne (1999) that elite archives of a finite size may 

suffer from partial deterioration, the proof still holds for elite archives of infinite size.

The Strength Pareto Evolutionary Algorithm (SPEA), described in Zitzler and Thiele

(1998a), incorporates an elitist strategy (here the concept was taken from Ishibuchi and

Murata, 1996), a newly introduced strength fitness measure which was applied in a 

tournament selection scheme, and finally the average linkage clustering method, a 

parameter-less replacement for the niche count described earlier. Comparison with other 

MOEAs showed however that SPEA suffers from three main weaknesses: the coarse 

fitness assignment gives identical fitness to all candidate solutions that are dominated by 

the same members of the elite archive – in the extreme case where the elite archive 

contains only one member, all members of the population are assigned the same fitness. 

Furthermore, SPEA employs its clustering algorithm only with regard to the elite 
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archive and thus fails to effectively preserve diversity in the search population. Finally, 

using clustering to reduce the elite archive size may result in loss of outer solutions. In 

Zitzler et al. (2001), the authors addressed these issues with the description of SPEA2. 

Here, the calculation of strength as well as clustering includes the entire population, 

whereas SPEA only considered members of the elite archive. 

Another important example of an elitist MOEA is the successor to NSGA, the Elitist 

Non-dominated Sorting Genetic Algorithm (NSGA-II). It aims to address several 

problems identified with MOEAs, namely their high computational complexity, the lack 

of conservation of good solutions and the guesswork associated with the definition of a 

niche size or sharing parameter. The first issue is kept in check by a consequent focus 

on efficiency of the utilised algorithms, in particular the sorting of candidate solutions 

into Pareto fronts. The introduction of an elite archive as suggested and implemented in 

several other sources addresses the second point. Thirdly, diversity is ensured using the 

newly introduced crowding distance, which measures the average side-length of the 

largest cuboid enclosing each candidate solution alone (Deb et al., 2000). Since outer 

solutions have no nearest neighbour on one side, they are assigned an infinite cuboid 

and consequentially always selected for the next generation.

The concept of elitism has its limitation: as mentioned, Hanne (1999) showed that even 

elitist Pareto-based MOEAs may encounter partial deterioration over the course of two 

or more generations, if the elite set is limited in size. To solve this problem of partial 

deterioration and answer to the lack of formal proof of convergence for an MOEA that 

ensures diversity, Laumanns et al. (2001) introduced the concept of -dominance. In 

order to guarantee convergence, their algorithm needs to work on two levels. On a 

coarse level, finding an -approximate set can be achieved by only replacing a solution 

from the elite archive if it is -dominated (in other words if it is dominated by more than 
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a small value ). Once an algorithm has found an approximation within -vicinity, this 

coarse-level strategy obviously prevents an algorithm from finding the true Pareto-

optimal set; a second, finer level is needed: If a solution dominates an elite solution by 

less than , but lies within the coarse-level box with side-lengths , it may be replaced – 

thus maintaining the possibility of definitive convergence.

There are a number of Multi-Objective Algorithms inspired by MOEAs which depart 

from the classic model of evolution and its operators, either by adding additional local 

search algorithms or by completely replacing the genetic operators. The inclusion of 

these lies outside of the scope of this thesis. Three are mentioned here in order to 

establish what lies beyond the fence.

The Entropy-based Multi-Objective Genetic Algorithm (E-MOGA) developed by 

Farhang Mehr and Azarm (2002b) adds a local search component based on the ideal gas 

model. A multi-objective optimizer built on the principles of Particle-Swarm 

Optimization is presented by Hu and Eberhart (2002). Hernández-Díaz et al. (2006) 

suggested an MOEA based on differential evolution combined with a local search using 

recent research on Rough Sets.

2.4 Research question

The presented research draws together the two existing fields of MOEAs and GP. It 

explores the concept of utilizing GP in the search for an MOEA with good convergence 

and distribution characteristics. Based on the reviewed literature, in particular taking in 

account the breadth of applications of GP and the well-researched fundamentals of 

MOEAs, I pose the following two Hypotheses: 

1. It is feasible for a (Multi-Objective) Genetic Programming Algorithm to find an 

MOEA that has similar or better convergence and distribution properties than 
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known “good” MOEAs if the search is performed using High-Level building-

blocks – such as Selection-, Crossover- and Mutation-Operators described in the 

literature.

2. It is very improbable that an MOGP System can find new genetic operators and 

selection mechanisms, although it is possible to build a GP-System that searches 

for such operators. 

2.5 Summary

The current body of knowledge relevant to the proposed project is roughly divided in 

two areas. The first area is concerned with Genetic Programming, a form of 

Evolutionary Computation which manipulates programs instead of configurations. 

Researchers have discussed problems related to the uncontrollable growth of GP 

individuals, which can be alleviated by allowing multiple objectives, and making a 

small program size one of them. Among the five preparatory steps for a GP experiment, 

three (in the context of this research project) fall into the domain of Multi-Objective 

Evolutionary algorithms. First, a fitness measure for GP must be chosen from one of the 

many MOEA-performance metrics. There is however some uncertainty concerning the 

theoretic validity of the available metrics and more thought needs to go into the 

validation of any selection. For both the second and third steps – selection of terminal 

and primitive function sets – high-level operators can be chosen from a wealth of 

MOEAs. Building on this foundation, the hypothesis is posed, that the attempted nested 

evolution can yield useful results.
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Chapter 3 Research Methods

3.1 Introduction

In pursuit of answers to the research question defined in the preceding chapter, 

controlled experiments will be conducted to explore the following partial questions: 

• Can GP find a good MOEA by pure recombination of known genetic operators and 

selection methods?

• Can GP define new selection methods, if given appropriate building blocks, and 

are they of similar quality as methods taken from the literature?

• How well do the best of these automatically generated MOEAs perform in more 

complex test problems, when compared to known good MOEAs?

These experiments are based on a Multi-Objective Genetic Programming system, 

running an implementation of NSGA-II. But which are the objectives? As has been 

discussed in the literature review, minimization of program size has been successfully 

employed to control code-bloat and figure as an objective throughout the experiments. 

To determine the rest of the objectives the following needs to be done: a Performance 

Metric or a combination thereof needs to be selected with care; this then needs to be 

applied to one or more test functions. The combination of these will result in a number 

of measurements that will serve as the remaining objective functions. 

3.2 The Open BEAGLE Framework

In order to run the proposed experiments, a framework for Evolutionary Computation is 

needed. The concomitant requirements include support for both Multi-Objective 

Evolutionary Algorithms and Genetic Programming, high computational efficiency, and 
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provisions for the comprehensive collection of data. Additionally, ease of configuration 

and code reuse are criteria towards the selection of a framework. The selected Open 

BEAGLE Framework (Gagné and Parizeau, 2006) includes all of these features; its GP 

implementation is tree-based and provides genetic operators that can perform mutation 

and crossover safely on populations with multiple data types. 

3.3 NSGA-II

The Open BEAGLE Framework provides an implementation of NSGA-II, as described 

in Deb et al. (2000). First, an initial population of tree-based genomes is generated, the 

individual fitness evaluated and non-dominated solutions are inserted into an 

unbounded elite archive. A temporary population twice the size of the parent population 

is then generated by combining the parent population with an offspring population 

generated by applying five GP-operators: 

• The crossover operator exchanges sub-trees between two individuals. In contrast to 

the mutation operators which all result in only one offspring, here two offspring 

solutions are copied to the temporary population.

• The standard mutation operator replaces a sub-tree with a newly generated one.

• The shrink mutation operator deletes a sub-tree from a solution. 

• The swap mutation operator replaces a node in the tree with another one from the 

set of primitives

• The sub-tree swap mutation operator exchanges two sub-trees within an individual

The resulting temporary population is then sorted into non-dominated fronts: first, all 

individuals that are not dominated by any others are identified, and removed from the 
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population. The same is done for the remaining individuals recursively, until there are 

no individuals left and the population is completely sorted.

The selection procedure starts with the first non-dominated front. If it is smaller than the 

configured population size, all members are copied into the next generation; the same is 

then done with the next non-dominated front. This step is repeated until the population 

is full. If there are superfluous members in the last included non-dominated front, those 

members are selected which have the greatest crowding distance: for each candidate 

individual, the two nearest neighbours in the non-dominated front are found for each 

objective. These form a cuboid, the average side-length of which is the crowding 

distance.

Finally, the elite archive is updated, considering only individuals in the first non-

dominated front. 

3.4 Tree depth instead of program size

In the tree-like genome employed throughout the experiments, program size can be seen 

as equivalent to the number of nodes in a tree. Preliminary experiments showed 

however, that this leads to an unfair advantage inversely proportional to the number of 

arguments of an operator. Using the depth of the tree instead provides a similar pressure 

against code-bloat and did not exhibit such a bias; this configuration was therefore used 

in the remainder of the experiments.

3.5 Selection of a Performance Metric: the Reverse Generational Distance

The usefulness of performance metrics for the comparison of approximation sets has 

been severely doubted. Great care must therefore be taken in choosing such metrics and 

the validation of that choice.
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3.5.1 Dominance Relations

In preparation of their investigation into performance metrics, Zitzler et al. (2002) 

define a set of dominance relations used to assess the utility of a performance metric:

In a -dimensional solution space  we define the two arbitrary approximation vectors 

 and : . The following relations are then 

defined:

•  strictly dominates , or , if is better than  in all objectives

•  dominates , or , if is better than  in at least one objective, and 

not worse in any objective

•  weakly dominates , or , if is not worse than  in any objective

•  and  are incomparable, or , if neither objective vector weakly 

dominates the other

The formal definition of an approximation set is then given as follows; a set  is 

called an approximation set, if each of its members is incomparable (or non-dominated) 

to all other members: . The set of all approximation sets 

is called .

After these definitions, the objective-vector relations are used to define relations 

between two approximation sets :

•  strictly dominates , or , if every objective vector in  is strictly 

dominated by at least one objective vector in 

•  dominates , or , if every objective vector in  is dominated by at 

least one objective vector in 
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•  weakly dominates , or , if every objective vector in  is weakly 

dominated by at least one objective vector in 

•  is better than , or , if  and  

•  and  are incomparable, or , if neither approximation set weakly 

dominates the other

Finally, Zitzler et al. define the concepts of compatibility and completeness for a vector 

of unary quality indicators  and a corresponding binary relation, 

together with the previously defined binary relations between approximation sets. A 

quality-indicator-relation is compatible with an approximation-set-relation if the former 

implies the latter (for example, if , then  is 

-compatible). On the other hand, a quality-indicator-relation is complete in respect to 

an approximation-set-relation if the former follows from the latter (in other words, if 

, then  is -complete).

For the performed experiments, in particular for the fitness evaluation of automatically 

generated MOEAs and two objectives, we are ideally looking for a -complete quality 

indicator – if  is better than , the value returned by the chosen metric for  must 

be greater (or smaller in the case of minimization) than the corresponding value for . 

With respect to compatibility, Zitzler et al. (2002) have shown that it is theoretically 

impossible to create a unary quality indicator that is both -complete and 

-compatible. Fortunately it turns out that we are not interested in -compatibility: 

such a quality indicator would be too coarse for the intended use, since we need to be 

able to meaningfully compare approximation sets that are incomparable according to 

Zitzler et al.'s classification.
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3.5.2 Grades of comparability

I therefore propose the following informal classification for incomparable 

approximation sets:

• Distribution-comparable: let  and  be two approximation sets such that 

, in other words the union of  and  is itself a 

different, larger approximation set (and all its elements are non-dominated to each 

other). In this case that approximation set is preferable which has the better overall 

distribution. Note that in this class it is still possible to have comparison-draws for 

different approximation sets, for example two sets that both include a dense cluster 

of solutions in different locations along the Pareto optimal front. However the 

author sees no reason why such a comparison should not yield identical quality 

indicator values, since without preference-input from the decision maker none can 

be said to be preferable to the other.

• Convergence-comparable: let  and  be two approximation sets and , , 

,  four subsets of  and , with ,  and 

. Here, most known convergence-based unary quality 

indicators will provide a result that favours the approximation set which has the 

greater proportion of good solutions. However, draws are possible, and it is easy to 

construe situations where such a quality indicator will favour an approximation set 

with a few perfect and many bad solutions over one with consistently good 

solutions. To alleviate this last problem, the standard deviation of a convergence-

based metric can be used instead. This is an arbitrary choice to emphasize good 

overall convergence over a few champion solutions – in the real-world case, where 

a decision-maker chooses one solution from the obtained approximation set, it is 
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important to minimize the probability of the chosen solution being an outlier far 

from the Pareto-optimal front; favouring approximation sets with uniform 

convergence properties therefore raises the confidence in any chosen solution.

3.5.3 Reverse Generational Distance

As stated above, we are looking for a -complete quality indicator, which – instead of 

also being -compatible – yields finer-grained information about the convergence and 

distribution qualities of incomparable approximation sets. The Reverse Generational 

Distance (RGD) – described in greater detail in the literature review – suggested by 

Bosman and Thierens (2003) is such an indicator. It is chosen because it includes 

information about the spread and distribution along the Pareto optimal front as well as 

convergence towards the Pareto optimal front. One problem associated with this metric 

is however that it requires careful definition of a uniform and sufficiently large set of 

members of the Pareto optimal front. If  is smaller than the approximation set , 

some members of  will be ignored in the fitness calculation. The RGD denotes the 

average closeness of an approximation set to the Pareto optimal front. As suggested 

above, the standard deviation from this metric will serve to favour individuals with 

good uniform convergence.

3.6 Test Problems

The inclusion of two separate Performance metrics into the objectives of our experiment 

poses a problem: to prevent building an MOEA specialised for one single problem, at 

least two test problems must be included in the GP-objectives. The combination of these 

with two Performance measurements, together with the above mentioned minimization 

of program size, results in a minimum of 5 objectives. In this scenario only the most 

basic test problems can be incorporated. This is a problem for two reasons: on one hand 
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the presentation of results is difficult for more than 3 objectives. On the other hand it 

has been observed that too many objectives may lead to stagnation of convergence 

(Coello Coello, 2005). For those two reasons the decision was taken to combine the 

performance measurements of all test problems. This leaves us free to explore four test 

problems defined by Zitzler et al. (2000). All of these follow the construction principle 

for two-objective problems defined by Deb (1999):

• The simplest problem, ZDT1, is a 30-variable problem with a continuous convex 

Pareto optimal front:

The Pareto optimal front is found for  and  for . 

The set of Pareto optimal solutions  needed for the RGD-Metric can thus be 

formed from uniform subdivisions of the value-range of .

• ZDT2 complements ZDT1 in that it is the non-convex counterpart:

The calculations of the Pareto optimal front and of  are as in ZDT1.

• ZDT3 exercises the difficulty of a discontinuous Pareto optimal front:
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Here,  can be formed with relative ease by travelling along uniform subdivisions 

of the value-range of  in increasing order, and selecting each point that results in 

a new optimum for . Like in the other test problems, the remaining optimal 

parameters are  for .

• ZDT4 has many local Pareto optimal fronts, making convergence difficult

The calculations of the Pareto optimal front and of  are as in ZDT1.

3.7 Wilcoxon rank-sum test

The result of the data collection phase is a number of populations (and in particular their 

elite archive) of tree-like genomes, assembled from predefined building blocks. For 

each building block we can examine how it contributes to either objective by taking two 

samples: one containing the elite archive, the other comprised of all individuals of the 

elite archive that contain the specified building block. The distributions of the two 

samples can now be compared with respect to each objective. Since the elite archive is 

the result of an evolutionary process, we must assume that the distribution of either 

sample is non-normal; therefore we do not have sufficient information about the 

parameters of the samples' probability distributions to employ a parametric test like 

Student's t-test. The Wilcoxon rank-sum test is used instead – a non-parametric test that 
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can compare the medians of two independent samples (Rinne, 2003; R Development

Core Team, 2006). 

To determine whether an operator contributes to good convergence properties, all 

individuals of an elite set that contain the operator in question are selected into the first 

statistical sample of size . The second sample comprises the entire elite set with 

 individuals. The null-hypothesis  assumes that the distributions of  and  are 

identical, while the alternative hypothesis  states that  is stochastically smaller than 

. The individuals in the two samples are now ranked according to their performance 

measurements, and the sum  of the ranks of the individuals in  is calculated (ties 

are resolved by averaging the respective ranks).  is rejected with confidence  if 

. The critical value  can be taken from statistical tables. This 

use of the Wilcoxon rank-sum test depends on the assumption that  and  can be 

regarded as independent samples.

3.8 Summary

The presented research concentrates on controlled experiments in the overlapping 

domains of GP and MOEAs. The foundation for the experiments is provided by the 

Open BEAGLE framework, with an NSGA-II algorithm as the main loop. The first 

objective in this MOGP is the minimization of tree depth. By using the Reverse 

Generational Distance metric in conjunction with its Standard Deviation as the second 

and third objectives, an arbitrary choice is made to emphasise uniform convergence 

over a few champion solutions. This choice is justified by two newly introduced classes 

of incomparable approximation sets: distribution-comparable and convergence-

comparable approximation sets. It also leads to the necessity of a priori knowledge of 

many points in the Pareto Optimal set. In order to avoid too many objectives, the fitness 
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measurements are averaged between all four performed test problems. The resulting 

populations are then analysed using the Wilcoxon rank-sum test.
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Chapter 4 Data Collection

4.1 Introduction

There are a wealth of diverse components described in literature, of which many 

combinations can be made into a working Multi-Objective Evolutionary Algorithm 

(MOEA). Putting the framework developed in the previous chapter into practice, the 

first experiment defines the function and terminal sets for high-level operators and 

explores the question whether there is an ideal combination, and whether we already 

know it. The second experiment searches for a new selection operator using lower-level 

functions. Appendix B, submitted on a separate CD, contains the developed source code 

and collected data. 

4.2 Experiment 1: High-level Operators

A Multi-Objective GP-System built on the base of NSGA-II forms the core of this 

experiment. The objectives comprise the minimization of tree depth (in order to 

preclude code-bloat), and a combination of the Reverse Generational Distance (Bosman

and Thierens, 2003) and its standard deviation taken on single runs of four test problems 

ZDT1-4 (Zitzler et al., 2000).  

4.2.1 Function set

The utilized function set consists of evolutionary operators from the literature. In order 

to ensure a representative sample of subjects, the predefined functions span the range 

from Schaffer's Vector Evaluated Genetic Algorithm (VEGA) to SPEA2. Each MOEA 

described in the Literature Review was disassembled into building blocks, which can be 

grouped into functional families. The collection of all these building blocks make up the 

function set (Table 1). A tree genome then corresponds to the operations executed in the 
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course of one generation, with fitness evaluation performed at the end of each 

generation.

Functional Family Operator Origin

Selection Strategies Vector Based Fitness Selection Schaffer, 1984

Tournament Selection Deb, 2001

Pareto Ranking Selection Fonseca and Fleming, 1993

Non-Dominated Sorting Selection Srinivas and Deb, 1994

Pareto Tournament Selection Horn and Nafpliotis, 1993

Strength Pareto Selection Zitzler et al., 2001

Fitness Modifiers Sharing in Parameter Space Srinivas and Deb, 1994

Sharing in solution space Horn and Nafpliotis, 1993

Dynamic Sharing in solution space Horn et al., 1994

Crowding Deb et al., 2001

Density

Crossover Operators Naïve Crossover

Blend Crossover 

Simulated Binary Crossover 

Mutation Operators Random Mutation

Normally Distributed Mutation

Deb, 2001

Elite Selection Strategies Unbounded Elite Archive De Jong, 1975

Truncated Elite Archive Zitzler et al., 2001

-Domination Elite Archive Laumanns et al., 2001

Table 1: Function Set

4.2.2 Terminal set

One of the often-cited drawbacks of MOEAs is the fact that their performance often 

depends on configuration variables such as crossover probability. For the purposes of 

this study, such configuration variables are defined as terminals in the GP-Algorithm, in 

the form of randomized probability values and upper limits to elite archive size. The 

only other terminal is that of the population: each individual starts with a copy of the 

same initial population, which is randomly generated for each generation to avoid 

creating a bias towards one specific initial population.
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4.2.3 Configuration and preliminary analysis

Over the course of 60 generations of the above Genetic Programming system, a 

population of 100 individuals was evolved. Each individual is itself a Genetic 

Algorithm, which evolves 60 individuals (each consisting of 30 real-value parameters) 

over the course of 60 generations. The resulting final population includes an elite 

archive of 67 non-dominated individuals, visualizations of which hint towards the 

existence of a trade-off surface (Figures 3 and 4).

Preliminary analysis reveals a surprising result: none of the three elite selection 

strategies are present in the final population, having disappeared from the population 

after few generations (Table 2). Due to the importance of elite selection to formal 

convergence proofs (Rudolph, 1996) such a result is not expected; it also stands in 

contradiction to empirical investigations into the usefulness of Elite Selection (Parks
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Figure 3: Elite archive of 67 individuals (60 generations 
per individual, 3d-scatterplot)



and Miller, 1998; Zitzler and Thiele, 1998; Deb et al., 2000). Yet this behaviour was 

even intensified if each individual was run over the course of 300 generations; 

Unbounded, -Domination and Truncated Elite Archive were last observed in 

generations 2, 4 and 6 respectively in that case. Running each individual for 30 or only 

15 generations (Figures 5 and 6) on the other hand consistently lead to the expected 

good performance throughout all generations of individuals which include an elite 

archive. 
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Figure 4: Elite archive of 67 individuals (60 generations 
per individual, plot matrix)
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Figure 5: Elite archive of 87 individuals (15 generations 
per individual, 3d-scatterplot)

Figure 6: Elite archive of 87 individuals (15 generations 
per individual, plot matrix)



Operator Generation

Truncated Elite Archive 5

-Domination Elite Archive 7

Unbounded Elite Archive 16

Table 2: Last occurrence of Elite Selection Strategies in individuals with 60 
generations

A possible explanation for the observed pattern is, that although the inclusion of an elite 

archive is beneficial for an MOEA, it competes with the disadvantage of introducing an 

additional depth-level into the individual's genome. As the number of allowed 

generations increases, an individual has ample time to find good solutions – the relative 

importance of the elite archive decreases and is not enough to counterbalance the 

disadvantage in the objective of program size. 

4.3 Experiment 2: Lower-level Selection

4.3.1 Function set

The selection strategies and fitness modifiers included in the function set in Table 1 are 

themselves built upon similar building blocks. A variation of the initial setting is 

therefore to replace the former with a selection of the latter in the primitive set and let 

the GP-System search for new combinations of these. These lower-level building blocks 

are used in combination with a Skeleton Selection Strategy to enable GP to explore that 

search space (Table 3). 

4.3.2 Terminal set

Initially, no alterations were made to the terminal set. Early results showed however, 

that a randomized configuration variable (denoting the size-limit of the Truncated Elite 

Archive) in combination with the newly introduced Skeleton Selection Strategy led to a 

highly deceptive local optimum: an individual that includes such a combination has a 
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small depth-level, resulting in high pressure against the intended lower-level exploration 

– which is not possible without additional depth-levels. After the removal of that 

terminal, the Genetic Programming algorithm was able to overcome this local optimum.

4.3.3 Configuration and preliminary analysis

As before, a population of 100 individuals is evolved over the course of 60 generations. 

Individuals are allowed to run for 15, 30 (Figures 7 and 8) and 60 generations. While 

populations in which individuals run for 15 generations repeatedly stagnate, both 30- 

and 60-generation individuals result in interesting trade-off surfaces.
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Figure 7: Elite archive of 73 individuals (30 generations 
per individual, 3d-scatterplot)



Lower-Level Operator Description

Skeleton Selection Strategy Creates a new population by calling its subtree once for each 
individual; updating the new population with an individual from the 
previous population at the position returned by the subtree. 

Random Individual Returns the position of a random Individual in the current 
population.

Select Lesser Selects from two positions of Individuals in the current population 
that one, for which a subtree of metric calculations returns the lesser 
value.

Select Greater Selects from two positions of Individuals in the current population 
that one, for which a subtree of metric calculations returns the 
greater value.

Least Objective Distance Calculates the Euclidean distance in solution space between an 
individual and all others in the current population, and returns the 
least of these. 

Average Objective Distance Calculates the Euclidean distance in solution space between an 
individual and all others in the current population, and returns the 
arithmetic average of these. 

Greatest Objective Distance Calculates the Euclidean distance in solution space between an 
individual and all others in the current population, and returns the 
greatest of these. 

Least Parameter Distance Calculates the Euclidean distance in parameter space between an 
individual and all others in the current population, and returns the 
least of these. 

Average Parameter Distance Calculates the Euclidean distance in parameter space between an 
individual and all others in the current population, and returns the 
arithmetic average of these. 

Greatest Parameter Distance Calculates the Euclidean distance in parameter space between an 
individual and all others in the current population, and returns the 
greatest of these. 

Dominator Count Counts the number of individuals in the current population that 
dominate an individual. Equivalent to Pareto ranking.

Dominated Count Counts the number of individuals in the current population that are 
dominated by an individual.

Add

Subtract

Multiply

Divide

Absolute

Sine

Cosine

Arithmetic operations. These are used to combine metrics.

Table 3: Lower-level building-blocks
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4.4 Summary

Controlled experiments were conducted first to explore possible recombinations of 

known good genetic operators. An interesting preliminary result is the fact that Elite 

selection strategies disappear from the population when individual solutions are run for 

a sufficient number of generations. Preliminary runs of a subsequent experiment 

exploring the combination of lower-level functions into a new selection operator 

displayed a similar idiosyncrasy: two unrelated primitives (the newly introduced 

Skeleton Selection Strategy and a randomized configuration variable) formed a highly 

deceptive local optimum. The removal of the latter helped circumvent that problem.
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Figure 8: Elite archive of 73 individuals (30 generations 
per individual, plot matrix)



Chapter 5 Results

5.1 Introduction

The results of the two previous experiments need to be treated differently. The findings 

of the first experiment are grouped by functional families. In each family, a one-sided 

Wilcoxon rank-sum test is used to compare the distribution of solutions with each 

operator. For each sample of individuals, the null-hypothesis ( ) states that the 

distribution of the samples is the same. The alternative hypothesis  asserts that the 

distribution of one sample is statistically smaller than the other. 

In the second experiment, promising solutions are of interest. Some sub-trees appear in 

multiple good solutions. These are presented in detail and potential reasons for  their 

success are given. Finally, testing the validity of the results, one of the resulting 

champion solutions is run against NSGA-II. 

5.2 Performance of high-level genetic operators

A first glance at the development of the Reverse Generational Distance over the course 

of 60 generations shows that there is indeed convergence towards a good MOEA. Both 

the best (Figure 9) and the average values (Figure 10) improve continuously. As is to be 

expected, performance of the best individual of each experiment appears to coincide 

with the number of generations it is allowed to run – champion solutions that ran for 60 

generations perform better than champions that ran for only 15 generations. Of 

particular interest is an exception to this rule: one champion running for 30 generations 

outperforms all but the best 60-generation individual. A closer look (Figure 12) reveals 

the nature of this individual's advantage: repetition. By including no less than 5 

selection- and 4 elite archiving operators, this individual has learned not to find an ideal 
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combination of operators, but to run good combinations multiple times; a strategy 

tantamount to running for more generations. This characteristic is typical for all 

individuals that yield a good Reverse Generational Distance. 

The same behaviour is also observed with respect to standard deviation from the 

Reverse Generational Distance (Figures 11 and ): the most uniform approximation set 

was found by an individual containing 8 selection- and 2 elite archive operators. 

Another interesting observation is the fact that the average performance with respect to 

uniformity seems to deteriorate at least when individuals are run for few generations. 

This may be due to a biased search space, or to the amplification of stochastic noise as 

individual trees grow in depth. 

46

Figure 9: Convergence with high-level operators: best individuals
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Figure 10: Convergence with high-level operators: average performance

Figure 11: Uniformity with high-level operators: best individuals
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Figure 12: High-level operators – Champion solution (30 generations per individual)



5.2.1 Selection strategies

Over the course of  nine evolutions, each of the six predefined selection strategies was 

present in at least one final population. In the case of the Vector Evaluated Selection 

strategy, it was exactly one individual (running for 15 generations) that survived – not 

enough to perform a Wilcoxon rank-sum test. The simple Tournament Selection 

operator was never found to contribute towards a good Reverse Generational Distance; 

in fact, reversing  to state that the RGD of individuals that contain this operator is 

stochastically larger than that of all individuals allows us to reject  with , 

or 95% confidence, in the single case where this operator survived for 60 generations.

The remaining four selection strategies were all found to contribute towards a good 

Reverse Generational Distance in most evolutions. This is not surprising, since the 
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Figure 13: Uniformity with high-level operators: average performance



population usually also contains individuals that have no selection operator whatsoever 

– naturally such an individual will not converge any more than a repeated creation of 

random parameters. However, there are exceptions. Table 4 shows the probability for 

 in the one-sided Wilcoxon rank-sum test for each evolution where a selection 

strategy is present. Where  can be rejected with 95% or even 99% confidence, the 

upper bound of the confidence interval is given.

Further than that, no reproducible and significant hierarchy could be found; the Strength 

Pareto selection operator is the only one present in all final populations, which leads to 

the assumption that individuals containing it should perform consistently better than 

other selection strategies. Pairwise statistical comparison does not confirm that 

assumption. In fact when present in the final population, each of the three other 

Selection Strategies seems to perform clearly better than Strength Pareto in two 

instances – but worse in the two remaining direct comparisons (Table 5).
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Operator Generations p(H0)

Upper bound of 
Confidence-Interval

95% 99%

Vector Based Fitness Selection

60 n.a.

30 n.a.

15 n.a.

Tournament Selection

60 n.a.

30 n.a.

15 0.9884

Pareto Ranking Selection 
(MOGA)

60 n.a.

30 0.00004765 -0.1501292 -0.1035766

15
0.001519 -0.0752172 -0.03141257

0.00907 -0.05044163 -0.00005892

Non-Dominated Sorting 
Selection (NSGA)

60
0.5144

0.008316 -0.05630598 -0.00001663

30
0.02828 -0.01502464

0.0001033 -0.2311525 -0.1134760

15 0.0001091 -0.1151989 -0.07498298

Pareto Tournament Selection 
(NPGA) 

60 0.9494

30
0.03405 -0.008254402

0.005159 -0.07647441 -0.007964649

15 0.9907

Strength Pareto Selection (SPEA)

60

0.001462 -0.09015276 -0.03478430

0.0003927 -0.1176485 -0.06775838

0.004583 -0.06728554 -0.005463645

30

0.923

0.007582 -0.07611457 -0.000006352

0.01879 -0.01524798

15

0.0007644 -0.08778878 -0.04510627

0.01804 -0.0229707

0.02950 -0.007866534

Table 4: Selection strategies – Wilcoxon rank-sum tests for the RGD-Metric, tested 
against the entire sample
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H1 Generations p(H0)

MOGA < NSGA

60 MOGA not present MOGA not present Both not present

30 0.02975 Both not present 1.0

15 NSGA not present 0.4872 Both not present

MOGA < NPGA

60 both not present MOGA not present Both not present

30 0.02881 Both not present 0.7857

15 0.000000143 NPGA not present Both not present

MOGA < SPEA

60 MOGA not present MOGA not present MOGA not present

30 0.00001207 Both not present 0.6216

15 0.6784 0.08438 MOGA not present

NSGA < MOGA

60 MOGA not present MOGA not present Both not present

30 0.9707 Both not present 0.1

15 0.6784 0.5192 Both not present

NSGA < NPGA

60 NPGA not present 0.00004059 Both not present

30 0.477 NPGA not present 0.01258

15 NSGA not present NPGA not present Both not present

NSGA < SPEA

60 0.9996 0.8829 NSGA not present

30 0.004173 NSGA not present 0.0006698

15 NSGA not present 0.01376 NSGA not present

NPGA < MOGA

60 Both not present MOGA not present Both not present

30 0.9716 Both not present 0.2857

15 1.0 NPGA not present Both not present

NPGA < NSGA

60 NPGA not present 1.0 Both not present

30 0.5256 Both not present 0.9894

15 NSGA not present NPGA not present Both not present

NPGA < SPEA

60 NPGA not present 1.0 NPGA not present

30 0.006313 NPGA not present 0.07677

15 1.0 NPGA not present NPGA not present

SPEA < MOGA

60 MOGA not present MOGA not present MOGA not present

30 1.0 MOGA not present 0.4054

15 0.3250 0.9173 MOGA not present

SPEA < NSGA

60 0.0003787 0.1191 NSGA not present

30 0.996 NSGA not present 0.9994

15 NSGA not present 0.9864 NSGA not present

SPEA < NPGA

60 NPGA not present 0.000001103 NPGA not present

30 0.994 NPGA not present 0.9264

15 0.000000164 NPGA not present NPGA not present

Table 5: Selection strategies – pairwise Wilcoxon rank-sum tests between operators

52



Operator Generations p(H0)

Upper bound of 
Confidence-Interval

95% 99%

Vector Based Fitness Selection

60 n.a.

30 n.a.

15 n.a.

Tournament Selection

60 n.a.

30 n.a.

15 0.01280 -0.003846905

Pareto Ranking Selection 
(MOGA)

60 n.a.

30 0.973

15
0.9981

0.9926

Non-Dominated Sorting 
Selection (NSGA)

60
0.0006776 -0.004810987 -0.002274547

0.2722

30
0.02935 -0.0004309259

0.998

15 0.9969

Pareto Tournament Selection 
(NPGA) 

60 0.08092

30
0.03222 -0.0003296422

0.9858

15 0.003068 -0.003677512 -0.001207473

Strength Pareto Selection (SPEA)

60

0.8967

0.597

0.9084

30

0.698

0.8981

0.9367

15

0.9928

0.9765

0.9354

Table 6: Selection strategies – Wilcoxon rank-sum tests for the standard deviation 
from the RGD-Metric, tested against the entire sample

With respect to uniformity, one result is interesting: individuals that contain the 

Strength Pareto selection strategy perform never more uniform than the rest of the 

population; the same holds for individuals that perform selection according to Pareto 
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Ranking (Table 6). Reversing  to state that individuals containing these operators 

perform less uniform (i.e. display a greater Standard Deviation from the Reverse 

Generational Distance) leads to the rejection of  with confidence between 55% and 

99% (Table 7). Again, this is not a clear enough result to make further conclusions.

Operator Generations p(H0)

Lower bound of 
Confidence-Interval

95% 99%

Pareto Ranking Selection 
(MOGA)

60 n.a.

30 0.02722 0.000575265

15
0.001929 0.005382293 0.002256502

0.007624 0.004384796 0.0001187272

Strength Pareto Selection (SPEA)

60

0.1046

0.4055

0.09316

30

0.3055

0.1038

0.06438

15

0.007334 0.003676457 0.00001717084

0.02368 0.0007337736

0.06516

Table 7: Selection strategies – Wilcoxon rank-sum tests for the standard deviation 
from the RGD-Metric with reversed H1, tested against the entire sample

5.2.2 Fitness modifiers

The inclusion of fitness modifiers depends on the presence of certain selection strategies 

in an individual. Due to this dependency, a comparison against the entire population is 

not meaningful. A pairwise comparison could yield meaningful results, since in such a 

test both samples would be subject to the same bias. However, like in the pairwise 

comparison of selection strategies, no conclusive result was found for convergence or 

uniformity.
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5.2.3 Crossover operators

The results for crossover operators look much the same: performance measurements are 

inconsistent both with respect to convergence and uniformity (Tables 8 and 9). One 

interesting observation is to be made: in the performance of the Blend Crossover 

operator, the trade-off between convergence and uniformity becomes apparent.

Operator Generations p(H0)

Upper bound of 
Confidence-Interval

95% 99%

Naïve Crossover

60

0.05145

0.2393

0.7003

30

0.0482 -0.00004843614

0.7105

0.9271

15

0.9081

0.005953 -0.04551753 -0.006990989

0.03033 -0.007832787

Blend Crossover

60

0.003842 -0.06461553 -0.01250502

0.2199

0.00914 -0.04032902 -2.771684e-05

30

0.2071

0.002329 -0.1104435 -0.04243788

0.02425 -0.006809555

15

0.01535 -0.02294651

0.03882 -0.00002264148

0.004112 -0.04517392 -0.01178846

Simulated Binary Crossover

60
0.01024 -0.07069292

0.9972

30

0.003001 -0.1639836 -0.05685838

0.9938

0.9977

15 0.9963

Table 8: Crossover operators – Wilcoxon rank-sum tests for the RGD-Metric, tested 
against the entire sample
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Although the minimal confidence lies only at 75%, we can tentatively say that the Blend 

Crossover operator has good convergence properties according to the Reverse 

Generational Distance metric. On the other hand it performs worse than other operators 

with respect to uniformity (Table 10). The other two crossover operators exhibit similar 

albeit less pronounced trade-off behaviour.

Operator Generations p(H0)

Upper bound of 
Confidence-Interval

95% 99%

Naïve Crossover

60

0.08279

0.00271 -0.001596323 -0.0005149918

0.001818 -0.004117106 -0.001392432

30

0.1490

0.008219 -0.001797548 -0.00003974828

0.003765 -0.00328261 -0.0006801973

15

0.02886 -0.0007144907

0.8568

0.8157

Blend Crossover

60

0.8923

0.9996

0.9942

30

0.6505

0.9977

0.9773

15

0.9818

0.9541

0.996

Simulated Binary Crossover

60
0.01214 -0.001141311

0.09819

30

0.7985

0.06482

0.01041 -0.002060077

15 0.007161 -0.004876103 -0.0006350011

Table 9: Crossover operators – Wilcoxon rank-sum tests for the standard deviation 
from the RGD-Metric, tested against the entire sample
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Operator Generations p(H0)

Lower bound of 
Confidence-Interval

95% 99%

Blend Crossover

60

0.1090

0.0003604 0.004197881 0.00242686

0.005981 0.003122627 0.0001638100

30

0.3506

0.002432 0.006857041 0.001568558

0.02321 0.0008158804

15

0.01847 0.001725731

0.04623 0.00007268932

0.004112 0.003416843 0.0007284367

Table 10: Blend Crossover – Wilcoxon rank-sum tests for the standard deviation from 
the RGD-Metric with reversed H1, tested against the entire sample

5.2.4 Mutation operators and elite selection strategies

Similar trade-off behaviour was observed with mutation operators and elite selection 

strategies: while mutation operators – surprisingly – seem to hinder convergence, they 

appear to be beneficial to uniformity. And while elite selection strategies, where 

present, optimize convergence with 99% confidence (Table 11), they appear to increase 

the standard deviation from the Reverse Generational Distance.

Operator Generations p(H0)

Upper bound of Confidence-
Interval

95% 99%

Unbounded Elite Archive

60 n.a.

30 n.a.

15 0.0001119 -0.1129449 -0.07190025

Truncated Elite Archive

60 n.a.

30 0.007425 -0.05244089 -0.0000161888

15 0.00001993 -0.1722501 -0.1073530

-Domination Elite Archive

60 n.a.

30 0.0001133 -0.2481601 -0.1371289

15 n.a.

Table 11: Elite archives – Wilcoxon rank-sum tests for the RGD-Metric, tested against  
the entire sample
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5.3 Lower-level functions

Like with the high-level operators, the populations investigating lower-level functions 

converge towards good values for both Reverse Generational Distance (Figures 14 and 

15) and the Standard Deviation thereof (Figures 16 and 17). An exception to this are 

individuals running for only 15 generations; these stagnate early and are unable to 

perform notably better than the initial random generation.  
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Figure 14: Convergence with lower-level operators: average 
performance
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Figure 15: Convergence with lower-level operators: best individuals

Figure 16: Uniformity with lower-level operators: average performance



5.3.1 Interesting solutions

Similar to the earlier experiment, the champion solutions – in particular the solutions 

that display good convergence characteristics – owe a major part of their success to the 

ability to perform multiple mutation-, crossover- and selection-cycles in one generation. 

Nevertheless there are two sub-trees – used in champion solutions and several good 

individuals – that look promising:

Figure 18 shows a detail repeatedly found in an evolution where individuals ran for 30 

generations. In this double tournament selection, the dominator count – the number of 

solutions that dominate an individual, essentially equivalent to the Pareto Ranking 

described in Fonseca and Fleming (1996) – plays an important role. First, two 

individuals are randomly drawn from the population. Of these two, that solution which 
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Figure 17: Uniformity with lower-level operators: best individuals



is dominated by fewer other members of the population proceeds to the second 

tournament, where it competes against another randomly drawn individual. In this 

second tournament, the distance in parameter space to the furthest other individual is 

computed, and the dominator count is subtracted from it. That individual for which this 

process results in the greater number is chosen into the next generation. 

In other words, this selection strategy 

corresponds to a tournament with 3 

participants; the individual which wins 

the first round for its better Pareto rank 

is only selected, if it resides in the 

outer regions of the parameter space – 

otherwise a random individual is 

selected.

A more competent variation on this theme is found in 60-generation individuals. In the 

Triple Tournament Selection strategy (Figure 19), four individuals are randomly drawn 

from the population. Two of these are compared with respect to their dominator counts 

or Pareto ranks; that individual which is dominated by fewer other solutions is the 

winner of the first tournament. For each of the other two solutions, the average distance 

in parameter space to all other solutions in the population is computed. That individual 

which has the greater average parameter distance competes against the winner of the 

first tournament.  

For each of these two remaining individuals, both the greatest and the least distance in 

parameter space to any of the other individuals in the population are computed. The 
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Figure 18: Double Tournament selection 
strategy: detail from champion 
solution (30 generations)



product of these two values will be called “Solitude” for the remainder of this 

dissertation; it reflects the distribution of an approximation set (nearest neighbour) as 

well as its extent (multiplying by the distance to the furthest neighbour gives an 

advantage to individuals near the edges of each parameter-range). The raw fitness of 

each individual is then found by subtracting the dominator count from the Solitude-

Metric. Finally, that individual which has the greater raw fitness is copied into the next 

generation. This procedure is roughly equivalent to selecting the individual which is 

dominated by fewer other solutions, and breaking a tie by choosing the individual that 

has the greater Solitude: in the four test problems used, where all parameters lie 

between 0 and 1 and good parameters are close to 0, the Solitude Metric will be greater 

than 1 only for few special cases that have no close neighbours. In all other cases, the 

individual with the smaller dominator count will be selected.
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Figure 19: Triple Tournament selection strategy: detail from champion 
solution (60 generations per individual)



Most of the well-performing individuals achieve good convergence by applying 

multiple selection operators per generation. This statement does not apply to the 

champion solution which contains the triple tournament selection. In fact, apart from 

multiple crossover operators, this individual includes no repeated stages (Figure 20). It 

will be referred to in the remainder of this thesis as the Multiobjective Evolutionary 

Triple-tournament Algorithm (META).

Finally it is worth mentioning a peculiar detail: the -Domination Elite Archive was 

found in a number of individuals with good Reverse Generational Distance. This 

operator needs a parameter , which governs the distance in solution space between 

individuals admitted into the Elite Archive. In all of these solutions,  was determined 

by randomly choosing an individual from the population and calculating the greatest 

parameter distance from this to any other individual. The fact that the distance between 

individuals was computed in parameter space precludes the possibility that this is a 

valid form of dynamic -Domination. It is more likely that in this case the GP-search 

has found a subtree that is optimized for the combination of employed test problems and 

performance metric: 

All four test problems are 30-variable problems, in which  for  

for the entire Pareto-optimal front. As the entire population converges and more 

individuals find , the greatest parameter distance of a random individual is likely 

to decrease. More individuals are accepted into the Elite Archive due to a smaller , 

which in turn reduces the Reverse Generational Distance.
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Figure 20: Lower-level functions – Champion solution (60 generations per individual)



5.4 Validation

It is apparent from the previous experiments that while it exhibits some difficulties 

finding a good combination of high-level operators, a Multi-Objective Genetic 

Programming environment can successfully find new selection operators. But how do 

these perform in direct comparison to a known good Multi-Objective Algorithm? To 

examine their quality, the obtained champion-solution and two of the details extracted 

from it were run against NSGA-II: 

1. An implementation of the entire champion-solution, including four instances of 

crossover and no mutation operator (META).  

2. The Triple Tournament Operator used as Selection Operator, with all other 

configuration-details identical to NSGA-II (Triple Tournament).

3. A variation of NSGA-II, with the Solitude metric replacing NSGA-II's crowding 

distance (Solitude).

These three and NSGA-II were each run over the course of 30, 60 and 100 generations, 

with 30 measurements taken per configuration. Appendix A contains comparative box-

plots of these measurements for each configuration.

5.4.1 Results

Neither of the three tested variations is an equivalent replacement for NSGA-II. When 

run over the course of 100 generations, NSGA-II consistently found the best 

approximation sets. For 60-generation evolutions the Solitude-variant resulted in better 

mean values. Finally, the META-variant outperforms all other configurations after 30 

generations. This is very probably the effect of forgoing the inclusion of a mutation 

operator: good solutions propagate quickly without the deteriorating effects of mutation. 

But once the best combinations of all genomes are found – and because no new 
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genomes are introduced – the search stagnates. This also demonstrates the importance 

of the choices made for the MOGP System configuration: it seems that the resulting 

algorithms have been specialized for being run over few generations.

5.5 Summary

Experiments on the combination of high-level operators yield results consistent with 

literature. However, these results are only occasionally statistically significant. 

Nevertheless, there is evidence supporting the contribution of selection strategies, 

crossover operators and elite archives towards convergence. Of the tested crossover 

operators, Blend Crossover leans most aggressively towards convergence, and 

contributes least to uniformity. Surprisingly, mutation operators appear to be mainly 

responsible for uniform approximation sets. 

The search for new selection strategies using lower-level functions yields three 

interesting partial trees, two of which are promising candidates. The third is evidence 

towards the danger of over-specialization: it is probable that its good performance has 

more to do with the nature of the test problems than with Multi-Objective Optimization 

in general.
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Chapter 6 Conclusions

6.1 Project review

This project has investigated the feasibility of nesting Multi-Objective Evolutionary 

Algorithms (MOEAs) in Genetic Programming (GP) experiments, with the aim to 

search for and find new selection strategies. A number of experiments were conducted, 

first exploring the ability of GP to recombine high-level operators into good MOEAs, 

later investigating whether new operators could be found from lover-level building 

blocks, and finally comparing the obtained results to NSGA-II, one of the best-known 

algorithms in the field.

In support of these experiments, a framework for nested evolution was developed both 

conceptually and in an implementation based on the Open BEAGLE framework 

(Appendix B). While not comprehensive, it offers a broad range of high-level operators 

and lower-level functions for inclusion in subsequent investigations. More importantly, 

it provides researchers with a structural base that solves the problem of evolving 

iterative processes, limited for the special case of evolutionary algorithms. And finally, 

it is extensible in so far as building-blocks, test problems and performance metrics can 

be replaced with equivalent operators. Limitations include the fact that the generational 

structure is constant – as in most GP-Projects, the search space cannot include loop 

operators. Overcoming the problems of automatically nested loops and the connected 

halting problem are still matters of investigation with researchers examining the 

foundations of Genetic Programming. Consequently, the presented framework cannot 

model approaches that diverge from classical evolutionary algorithms.

Also prerequisite to the experiments, it was shown that the theoretical limits that govern 

unary performance metrics for multi-objective approximation sets can be worked 
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around. The definition of finer-grained comparability – for those cases where two 

approximation sets are incomparable according to the dominance relations described by 

Hansen and Jaszkiewicz (1998) and Zitzler et al. (2002) – and the arbitrary choice to 

favour uniform approximation sets over few champion solutions, together enable two 

approximation sets to be compared with a simple process. 

The distribution of solutions in the resulting data sets support the initial assumption that 

the search for MOEAs is itself a multi-objective problem: all experiments yielded elite 

sets with distinct trade-off surfaces that can be observed to converge towards better 

solutions as the GP-evolution progresses. However, the  recombination of high-level 

operators did not yield the expected clear recommendations on which building blocks to 

use in which case. In-depth analysis of the obtained data showed several limitations of 

the chosen approach: many of the fittest solutions had solved the posed problem by 

repeating elements from each functional family (elite-set selection, mutation and 

crossover) several times per generation, thus gaining the advantage of additional 

generations. This resulted in many ties in the ranking process inherent to the Wilcoxon 

rank-sum test, which may explain the fact that few significant differences in the 

performance of the employed building-blocks were found. Additionally, a distinct 

propensity to specialize was found: the shape of both the search-space and the Pareto-

optimal front defined by the employed test problems influence the generated solutions. 

In the four test problems employed in this study, most parameters needed to approach 

zero  in order for the population to converge towards the Pareto-optimal front. In certain 

GP-individuals a specialization for this fact was found. And while it is of course 

desirable to find such a specialization in the MOEA-individuals depicting the 

approximation set, for the GP-individuals that describe how the approximation set 

should be found, a more general proficiency is favoured.
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It also needs to be noted that the criteria determining the end of an evolution influence 

the results: in this study, the number of generations was fixed to a low level, due to the 

exceedingly high computational complexity of nested evolutionary algorithms. This has 

resulted in a related specialization and in what appears to be a separation of Mutation 

and Crossover operators – demonstrated in the validation experiments, where the 

absence of a Mutation operator from the Multi-objective Evolutionary Triple-

Tournament Algorithm (META) leads to significantly better results after 30, but also 

significantly worse results after 100 generations.

In conclusion we can state that neither of the two hypotheses posed in conjunction with 

the research question are unquestionably supported or rejected. While no combination 

of high-level building blocks was found which has convergence properties similar to 

those of known “good” MOEAs, the insights gained into the process of nested evolution 

may enable successful experimental configurations in future research. Similarly, the 

search for new selection strategies was more successful than expected: in what is the 

most exciting result, two new selection strategies consisting of lower-level functions 

were found. One of these is the Triple Tournament Selection operator which includes 

the Solitude distance operator, a new and somewhat surprising method of ensuring 

diversity. 

6.2 Future research

There are several variants of the developed framework that are worth investigating: 

since the objective of uniformity is secondary to that of convergence, and since the 

standard deviation from the Reverse Generational Distance (RGD) metric was observed 

to be several orders of magnitude smaller than the metric itself, it may be worth 

combining the two by simple addition. The expected behaviour of such a combined 
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metric would be to select individuals with good convergence properties, while 

additionally favouring individuals with slightly worse but significantly more uniform 

convergence.

The optimization of program size remains an interesting quandary. In the context of 

evolving MOEAs from high-level building blocks, it may be a valid strategy to limit the 

program size to the number of identified functional families. In addition to removing 

one of the objectives from the multi-objective problem, that approach would also 

significantly reduce the search space by limiting the number of possible operator-

combinations.

Many more building-blocks would be possible. Of particular interest are lower-level 

functions that provide a form of introspection into the state of the evolution: a 

generation counter, the average fitness-improvement from the previous generation, or 

other internal information, could be used to influence the relative probability of 

mutation and crossover. Can an evolutionary process find such a relation?

Results from this study suggest that – at least for the test problems employed – 

crossover is most efficient for short evolutions, whereas mutation is more important in 

evolutions over many generations. It seems likely that there are at least two phases in an 

evolution, in which a population reacts differently to the operations it is subjected to. 

The identification of such phases (for lack of a better example: early, middle and late), 

and the role of each genetic operator in these, seem a topic worth exploring, both for the 

single- and the multi-objective case. Also of interest is the precise role that the number 

of generations per individual plays in the nested evolutionary system. 
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